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Abstract—Grid connected electrical storage has a high poten-
tial to support the transition towards a reliable decentralized
and renewable energy supply. It is expected that lithium-ion
batteries will play a major role in this transition, because of
their high energy density and of the potential capacity that is
offered by plug-in (hybrid) electric vehicles. The use of lithium-
ion batteries in grid support may result in additional degradation.
Intelligent control of these batteries can assure that the additional
degradation rate is minimized and their utilization is cost-
effective. It is, therefore, imperative that the intelligent control
has an excellent understanding of the aging behavior of the
battery, so it can maximize the benefits for the battery owner.
Based on this logic, cycle life experiments were performed on
lithium polymer cells in which the cell life dependence on the
depth of discharge was investigated. Other cell characteristics
that were studied include the equivalent series resistance and the
efficiency.

Index Terms—Lithium polymer, Cycle life, Depth of discharge,
Equivalent series resistance

I. INTRODUCTION

With rising fuel prices and the call for reduction of carbon
dioxide emissions, renewable and high efficiently electric-
ity sources such as wind turbines, domestic combined heat
and power generation and photo voltaic cells have become
more popular than ever. Unlike conventional fossil-fuel power
plants, most of these distributed electricity generators are not
driven by the overall electricity demand but by external factors
such as wind velocity, solar irradiation and the heat demand
in buildings. Therefore, distributed generators might produce
electricity at times when there is no electricity demand and
visa verse, resulting in an imbalance between supply and
demand. As long as the share of distributed generation (DG) in
the electricity network is small, the conventional power plants
can compensate for this imbalance. Future scenarios, however,
show that distributed generation will most likely become the
main source for electricity [1]–[3]. These large shares of DG
will make it increasingly difficult for network operators to
balance supply and demand of electricity. Eventually, this will
lead to more unstable grids with an increased possibility of
black outs as a result. A lot of research in solving these
problems is focused on active management of electricity grids.
Energy producing and consuming devices and appliances are
intelligently controlled, utilizing their flexibility to counterbal-
ance a deficiency or abundance in electricity. This principle has
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been incorporated in a multi-agent based coordination concept
named PowerMatcher [4], [5].

It has been demonstrated through simulations and field-
experiments that such intelligent control of devices can co-
ordinate the supply and demand when distributed generation
provides the majority of the electricity in a grid [6], [7].
However, there are situations in which such a smart grid cannot
maintain the power balance with flexible devices alone. In
those situations, grid connected electrical storage systems can
provide relief and any imbalance that cannot be compensated
by intelligent control of devices is then exchanged with storage
systems.

Central storage systems have little influence on local im-
balances caused by DG and are also bound to power flow
constraints in the network. By distributing many small grid
connected storage systems over a wide area, local imbalances
can be resolved, while the total storage capacity in the grid is
still comparable to a central storage system. Only high energy-
density batteries qualify for these distributed storage systems,
because of their mobility, simplicity and flexibility. With the
interest in plug-in (hybrid) electric vehicles (PHEV) growing
by the day [8], distributed electrical storage in residential
areas with batteries is already becoming a reality. Lithium-ion
batteries seem to be the best candidate for this application,
because of their potentially long cycle life, good deep cycling
characteristics, high energy density, high efficiency and safe
use. Also, many car manufacturers of hybrid and plug-in
(hybrid) electric vehicles have opted for the use of lithium-
ion in the near future.

The challenge in controlling grid connected electrical stor-
age is optimizing the financial benefits of the battery when
used in multiple applications. One example is a PHEV battery
offering ancillary services to increase the stability of the grid,
an addition to its main function of supplying the car with
electricity. Offering ancillary services to the grid increases the
strain on the battery, thus reducing its life expectancy. One of
the current issues with the use of lithium-ion batteries in grid
connected applications is cycle life time. As lithium-ion cells
gradually deteriorate under a cyclic load, irreversible chemical
reactions causing an increase in cell resistance and decrease
the number of available lithium ions, resulting in a reduced
usable cell capacity. The aging rate and cycle life of the cell
depends on many parameters such as charge and discharge
rates, temperature, end of charge and discharge voltage and
depth of discharge [9], [10]. This large list of parameters
makes it difficult to predict the life expectancy of lithium-ion
cells during operation, especially if the operating conditions
are often changed. If the life expectancy of a battery can be
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predicted from its operational use, control strategies can be
developed and incorporated in the intelligent control systems
to prolong the life time of the battery by optimizing the
participation in ancillary services together with the financial
benefits. It can also provide network operators with a cost
estimation of ancillary services.

In this paper, lithium-ion battery cycling experiments,
specifically the application of grid connected storage in smart
grids, is discussed, as well as which battery characteristics can
be used most effectively to predict the cycle life of a battery
in such application.

II. EXPERIMENTS

The most common way to study deterioration of lithium-ion
batteries under cyclic loading is to determine the capacity fade
by an 80% or 100% battery discharge. However, these tests
were designed for an accelerated study of the battery lifetime.
In real-life applications it is very rare that a battery under-
goes such deep cyclic behavior but irregular charge/discharge
patterns. For example, PHEV batteries are most likely fully
charged at night and only partially discharged during the day.
Therefore, our study is mainly focussed on the effects of the
depth of discharge on the cycle life.

A. Definitions

In literature, slightly different definitions can be found for
the state of charge and depth of discharge of a battery. To
avoid confusion, this paragraphs will discuss the definition of
these parameters as used in this article. The state of charge
(SOC) of a battery is a measure of how much charge is left in
that battery with respect to its nominal capacity, i.e.

SOC =
Q

Q0
(1)

where Q is the amount of charge at a given moment and Q0 is
the nominal capacity of the battery. As the nominal capacity is
a fixed value that does not change in time, aging has the effect
that the SOC for a fully charged battery will slowly decrease
in time.

The depth of discharge (DOD) is a measure of how much
charge is drained from a battery in one cycle. To be exact, the
DOD equals the change in the SOC in one discharge cycle, i.e.

DOD = ∆SOC =
1

Q0

∫
I(t)dt (2)

where I the discharge current. A DOD of 60% means that the
battery is discharged in its first cycle from a SOC of 100%
until a SOC of 40%. As battery aging takes place, the SOC
of a fully charged cell after a number of cycles decrease to
e.g. 97%. The next discharge cycle with a DOD of 60% will
then occur between a SOC of 97% and 37%.

For the nominal battery capacity Q0, we have chosen to use
the name plate capacity (i.e. the capacity as specified by the
manufacturer) instead of taking the actual capacity of a new
battery. The latter is often determined by cycling a battery
about 5 to 10 times before measuring its capacity and depends
on the testing conditions. However, from an application point

Fig. 1. Schematic outline of the battery test set-up

of view, it is only the name plate capacity of the battery that
is known (specified by the manufacturer). It is also assumed
that the batteries tested are equal in capacity and performance.
Hence the use of the name plate capacity was chosen.

The charge / discharge current of a battery is usually
expressed in terms of ”C” and is equivalent to the inverse
of the battery charging time (based on the nominal capacity),
i.e.

I = Q0C (3)

For a battery with a nominal capacity of 1500 mAh, the charge
current for respectively 1C and C/10 is 1.5A and 0.15A.

B. Set-up

To allow for maximum flexibility, a custom-made battery
test system was used as depicted in figure 1. Each test
system contains a Kepco bipolar operational power supply
BOP 36-6M, control unit, shunt and thermal switch. The
bipolar power supply both charged and discharged the battery
and was connected to the battery via the thermal switch,
an additional safety measure to prevent the battery from
overheating, although no such events have occured during
testing. The power supply was regulated by the control unit,
which was programmed to perform regular or irregular cycle
patterns. The control unit also protected the lithium-ion cell
from overloading or exceeding the lower voltage limit. The
50mΩ shunt was placed in the circuit between power supply
and battery and was used to measure the current through
the system. The wiring was kept as short as possible to
minimize its resistance. Other measured quantities were the
cell’s terminal voltage and shell temperature as well as the
ambient temperature. The system was situated in a climate
controlled room where the ambient temperature was set to
25◦C. However, deviations from this set point have occurred
during measurements due to incidental failure of the climate
control system. An Agilent 34970A data acquisition unit was
used to log the current, cell voltage, cell temperature and
ambient temperature with a sample time of 1 minute.

The cells were charged using the well-known two step
constant current constant voltage (CC-CV) protocol. First, a
current of 1C was applied until the cell voltage limit of 4.2
volts approached. The system was switched to voltage control
in which the voltage was held constant while the current
gradually reduced. Charging was terminated when the current
dropped below C/20. The use of such a relative high charge
and discharge current has been chosen to mimick real life
use in grid connected storage applications, such as charging a



IEEE TRANSACTIONS ON ENERGY CONVERSION 3

vehicle or absorbing a surplus production in wind energy. This
way, the limits of the cells were tested. To reduce transient
behavior in the chemistry, there was a 30 second break before
discharging the cell, in which the current is zero.

A constant current of 1C was applied to discharge the cell.
From measured current and time, the control unit calculated
the amount of charge drained from the battery. The name-
plate capacity has been entered manually in the control unit
algorithm, so it could calculate the DOD at any time. When
the DOD corresponded to the user-specified threshold, charging
commenced and the cycle started again. Discharging the cell
also ended when the cell voltage dropped below the cut-off
voltage as specified by the manufacturer. The cut-off voltage
(or lower limit voltage) averted the cell being too deeply
discharged to avoid irreversible damage.

The cells were individually tested, i.e. each cell had its own
test set-up as shown in figure 1. In total 4 test set-ups were
available, so that four cells could be tested individually at the
same time.

C. Cell testing

At to the time of the preparation for the research as
described in this article (2004), Lithium Polymer (LiPo) bat-
teries were the most promising technology for grid connected
electricity storage. In LiPo batteries, the lithium-salt electolyte
is not held in an organic solvent, but in a solid polymer com-
posite. With the absence of free-liquid, it can be packaged in
light-weight cheap plastic containers. These ”plastic” batteries
are expected to be less expensive and easier to scale up than
its liquid counterparts.

We have chosen to use the Kokam 1500mAh Superior
Lithium Performance Batteries (SLPB) series SLB 603870H,
which are LiPo batteries with a conventional cobalt oxide
cathode. The manufacturer specifies a cycle life of at least
500 cycles (at 80% DOD), a lower cut-off voltage of 3.0 volts,
a maximum charge current of 1C and a maximum discharge
current of 5C. Larger versions of these Kokam SLPB cells are
currently used in a variety of electric vehicles, like a Lotus
Elise [11] or an electric racing car [12].

With the time needed to test a single cell (4 months up to
3 years per cell, depending on the test pattern) and with 4
test places available, only 10 cells were tested under partial
discharge. Cells were discharged with 10% (1 cell), 20% (1
cell), 50% (2 cells), 80% (4 cells) and 90% (2 cells) of their
name plate capacity. Two more cells have been tested in a
capacity fade study, i.e. discharging the cell to its lower voltage
limit in each cycle. The times to perform one partial cycle
(discharge and charge) were 50 minutes (10%), 87 minutes
(20%), 139 minutes (50%) and 177 minutes (80%). The time
to perform one partial cycle remained constant up to the point
where the battery failed. The definition of failure will be
discussed in the next section.

III. RESULTS

A. Cycling tests

The discharge voltage characteristic at different cycle num-
bers for one of the two cells discharged with a depth of
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Fig. 2. Cell voltage versus the discharge capacity at different cycle numbers
for a cell discharged with 50% of its name plate capacity and a current of
1.5 A (1C).

50% is shown in figure 2. A few things can be observed,
the voltage measured at the start of the discharge cycle is not
only below the cell voltage limit of 4.2 volts, it also drops
with increasing cycle number. The explanation can be found
in the equivalent series resistance (ESR) of the cell. The open
source voltage at this point is 4.2 volts, but because of the
voltage drop across the ESR, the terminal voltage is lower. Cell
deterioration increases the ESR resulting in a larger voltage
drop and hence, a lower terminal voltage. The ESR will be
discussed in more detail in section III-B.

Additionally, figure 2 also shows a decline in the end of
discharge voltage, which is the voltage where cell discharge is
stopped either because 50% of the nameplate capacity has been
discharged or the lower cut-off limit of 3.0 volts is reached.
The decline is caused by the increasing cell resistance and the
loss of lithium ions in parasitic chemical reactions reducing the
effective usable capacity of the cell. When the end of discharge
voltage hits the lower voltage limit, the cell can no longer
satisfy the imposed 50% DOD specification and thus fails. In
other words, the cell’s cycle life is defined as the number of
cycles that it can complete for a fixed DOD until it can no
longer satisfy this discharge requirement. Failure for the cell
in figure 2 occurs in cycle 2622. It is important to realize that
our definition of cycle life is different from a more common
definition, mainly used by battery manufacturers, which states
that a cell fails when less than 80% of its initial capacity is left.
This definition most likely find its roots in the expectation that
below 80% the rate of degradation increases. As will be shown
in section III-E, this definition might be flawed. However, our
definition is based on a financial approach which is more
reasonable for real-life applications. After all, replacing a
battery that still has 80% of its capacity left is unnecessary,
when only 50% is used in each cycle.

It is not possible to compare the number of cycles for
batteries with different discharge depths directly, because of
the unequal amounts of energy that flows through the system.
A cycle of 10% DOD exchanges only a fifth of the energy than
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Fig. 3. The DOD plotted against the nominal cycle life. Note that the 10%
and 20% cells have not reached failure yet.

one 50% DOD cycle. Multiplying the number of cycles with
the DOD gives the nominal number of cycles, i.e. the number
of 100% DOD cycle equivalents.

The nominal cycle life versus the DOD is represented in
figure 3. Exceptions are the 10% and 20% DOD experiments,
of which the number of cycles completed so far is shown,
instead of their actual cycle life. The cell with a 10% DOD
managed to complete almost 20,000 cycles (equivalent to
2,000 nominal cycles), before the experiment was aborted. The
remaining capacity in the cell at that moment was still 74%
of its name-plate capacity. The 20% DOD cell is still running
after three years while already having performed over 10,000
partial cycles. Its final results will be published in future work.
If a straight line is drawn through all points, it would cut the x-
axis at DOD = 0.93. However, it is expected that the line cuts
the x-axis at DOD = 1. This observation follows from using
the name-plate capacity as the reference capacity instead of
the real cell capacity for the described test procedure. It can,
therefore, be concluded that on average the usable capacity of
a new cell in our test conditions is 93% of the name plate
capacity.

Figure 3 shows that the lower the DOD of a cell, the
longer its nominal cycle life is. Therefore, more energy is
exchanged during a cell’s life time if a cell has a low DOD.
The total energy that flows through a 50% and 80% discharged
cell during its lifetime was found to be 7.3 ± 0.2 kWh and
1.5±0.2 kWh respectively. There are two reasons that explain
this characteristic. First, a cell is allowed greater amounts of
capacity loss when it has a low DOD, which follows from the
definition of cell ‘failure‘. A cell that is discharged with 50%
can lose 50% of its capacity, while a cell discharged with 80%
can lose only 20% of its capacity. Secondly, the strain on the
battery is less with a lower DOD as less lithium ions react in
each cycle. This results in a lower capacity loss rate, increasing
the cycle life time of the cell. The amount of energy that
flows through the battery during its life time is an important
characteristic for the economical feasibility of grid connected
storage applications. Assuming a fixed profit per unit of energy
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Fig. 4. Equivalent series resistance plotted against the cycle number after
temperature correction (see figure 6) for a cell discharged with 50% of its
name plate capacity.

that flows through the cell, the 50% discharged cell generates
almost 5 times more income than the 80% discharged cell
during its life time.

A relation between the nominal cycle life and the depth of
discharge cannot yet be deducted from figure 3 because of the
limited number of data points available. For DOD > 0.5 the
relation is approximately linear, but it appears as though the
nominal cycle life for small (< 0.5) DODs can be found above
this imaginary straight line. Hence the relation between DOD
and nominal cycle life is probably not linear.

B. Equivalent series resistance

Already mentioned in the previous section is the equivalent
series resistance (ESR). In the performed experiments, the
ESR was found by measuring the voltage drop at the current
step between charging (I = 0 A) and discharging (I = −1.5
A) the cell. As voltage measurements are done at fixed time
steps, it was not possible to measure the exact voltage directly
after the current step. Instead, linear interpolation was used to
obtain the voltage drop which resulted in a 10-cycle average
value of the ESR at charged state.

The ESR for a cell discharged with a depth of 50% is plotted
as function of its cycle number in figure 4 after temperature
correction (see section III-C). Three phases can be distin-
guished in its behavior. In the first phase, (0 ≤ cycles < 2500)
the cell is discharged with a constant DOD. The transition to
the second phase (2500 < cycles < 2800) is situated at the
point of cell failure. The ESR‘s rate of change in the second
phase is higher than in the first phase and can be attributed
to the absolute discharge depth of the cell. In cycles < 2500,
the cell is not entirely discharged, opposite to cycles > 2500.
It is well known that a deeper discharge causes increases the
deterioration rate of the cell [13], resulting in a faster increase
of the ESR. In the third phase (cycles > 2800) however,
the ESR rate decreases again. It is believed to be caused
by the lack of lithium-ions that participate in parasitic side
reactions, as most have been consumed. As a result, even the
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Fig. 5. Nominal cycle life that has been performed before the ESR increases
to 1.3 times its initial value for cells discharged with different depths of
discharge.

parasitic chemical reactions occur at a slower rate. In the third
phase, it was measured that the remaining capacity of the cell
comprised of less than 10% of its nominal capacity. The main
interests, however, were focussed on the first phase, which is
the normal operational area of the cell.

The increase of the ESR during the lifetime of a cell has
a major impact on the trading behaviour for grid connected
storage. Storage that is solely used to trade electricity (e.g. on
a power exchange market) sells its electricity against a higher
price than the price for which it bought in order to make
a profit. As energy is lost between buying and selling (i.e.
charging and discharging), the sell price does have to include
the costs for these losses. Therefore, the minimum sell price
psell can be expressed in terms of the buy price pbuy and the
cycle efficiency η of the storage system following

psell ≥ pbuy/η (4)

As the ESR increases, the cycle efficiency decreases and the
gap between the buy and sell price increases. This makes the
storage system less competitive in the market.

The initial value for the ESR when new was found to be
R0 = 0.12 ± 0.01Ω for all measured cells. A less common,
but not unusual, definition of the battery cycle life is based
on the ESR and is defined as the number of cycles the battery
can perform before its ESR increases to 1.3 times its initial
value. The relation between the DOD and the nominal cycle
life based on this definition is shown in figure 5. As opposed
to figure 3, where the number of cycles completed to date are
shown for the 10% and 20% DOD cells, here they are shown
with their actual cycle life. As the figure shows, more nominal
cycles can be performed when a cell is discharged with a lower
DOD. A linear relation between the DOD and the nominal
cycle life can be detected, but whether this is a one time
result has to be studied in future experiments. Nonetheless,
from a grid connected storage perspective, it is desired to have
shallow depths to keep the increase rate of the ESR low. This
will lengthen the storage system competitiveness in the trade
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market.

C. Temperature vs ESR

In a period of 5 days, variations in ambient temperature
have been observed due to air conditioning failures in the
peak summer period. Although data is limited to these 5 days
(i.e. 40-100 cycles) it has allowed us to study the relation be-
tween the ESR and ambient temperature. Due to the relatively
short time scale in which the temperature variations occurred,
the increase in ESR resulting from aging was neglected. The
relation between ESR and temperature for a cell with a 50%
DOD is shown in the Arrhenius-type plot in figure 6, where
the logarithmic ESR is displayed as function of the inverse
of the ambient temperature. The ESR increases rapidly with
decreasing temperature and may be caused by the lower ionic
conductivity in the electrode and polymer gel and/or slower
chemical reactions in the cell. This exponential behavior of
the ESR, as function of temperature, corresponds with earlier
found results in literature [14]. A straight line fitted through
the data points resulted in the following relation between the
ESR R and temperature T

R = R0e
A/T (5)

where R0 is the temperature independent and cell specific ESR
and A is the Arrhenius relational parameter. All four cells that
have been tested in this period shows this Arrhenius relation.
The average value and standard deviation of the parameter A
for these cells was found to be 3.1± 0.2 · 103 K.

The dependence of the ESR on temperature is important
for grid connected storage systems that are not located in a
conditioned space, e.g. plug-in (hybrid) electric vehicles or
substations with electricity storage. From a trading perspective,
the sell price for the stored electricity must be higher than the
buy price plus the costs for losses. As temperature changes,
the ESR changes and with that, the costs for losses. Hence,
there exists a relation between the ambient temperature and the
relative sell price with respect to the buy price of electricity.
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Fig. 7. Coulomb (top) and energy (bottom) efficiency for a cell discharged
with 50% of its name plate capacity. The vertical dashed lines denote the
point of failure of the cell.

D. Efficiency and ESR

Another important characteristic of lithium-ion cells is the
efficiency. The Coulomb efficiency ηc and energy efficiency ηe

are per definition the ratio between charge, respectively energy
output and input in one cycle, i.e.

ηc =
Qdischarge

Qcharge
=

∫
d
I(t)dt∫

c
I(t)dt

(6)

ηe =
Edischarge

Echarge
=

∫
d
V (t)I(t)dt∫

c
V (t)I(t)dt

(7)

where I(t) and V (t) are the measured respective current and
voltage and

∫
c

and
∫

d
the time integrals over the charge and

discharge periods in one cycle. Figure 7 shows the 10-cycle
average coulomb and energy efficiency for a cell discharged
with a depth of 50% of its name plate capacity. Variations
in the efficiency are a result of the sample time resolution.
The coulomb efficiency is approximately one throughout the
experiment, so it is not being affected by the aging of the
cell. The opposite is true for the energy efficiency. The
efficiency gradually reduced with increasing cycle numbers.
In the first few cycles, the energy efficiency was found to be
ηe = 0.94±0.01 for all tested cells which is not an uncommon
value for lithium-ion batteries [15]. As failure was approached
(denoted by the dashed line), the energy efficiency reduced
to ηe = 0.85 ± 0.01. It is believed that this drop in energy
efficiency can be contributed to the increase of the equivalent
series resistance, as shown in figure 4.

Assuming the cycle energy loss is caused by the ESR only
and not by any chemical side-reactions, the energy that flows
into the battery in each cycle equals the outgoing flow minus
resistance losses, i.e.

Edischarge = Echarge −Ri

∫

T

I2(t)dt (8)

with Ri the ESR and T the cycle time period. Substituting
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Fig. 8. Deviation between measured and calculated energy efficiency

equation (8) in (7), one obtains:

η(d)
e =

[
1 +

Ri

Edischarge

∫

T

I2(t)dt

]−1

(9)

in which the dependence on the energy input from charging
has been eliminated. The absolute difference between η

(d)
e

and ηe is plotted in figure 8. The error bar is based on the
measurement variations caused by the time step resolution.
From figure 8 it is immediately clear that any difference in
efficiency can be neglected with regard to the size of the
error. In other words, η

(d)
e and ηe are equal. This makes the

earlier made assumption about the ESR being responsible for
all energy loss plausible. However, one expects the ESR to
vary with the SOC [16], [17] and only the ESR at charged
state was measured in this experiment. Future research will
have to show whether the influence of the SOC on the ESR is
significant for this type of cell and if so, what other parameters
play a part in the cell’s energy efficiency. Even if the energy
loss might not be entirely contributed to the ESR, the ESR
remains an important parameter in competitive market trading.
The ESR is fairly easy to measure as opposed to the cycle
efficiency, because of the irregular charge/discharge patterns
and currents used in real applications.

E. Capacity fade

Finally a capacity fade experiment was performed as a worst
case scenario for a lithium-ion cell. A capacity fade study
discharges the cell in each cycle to the lower voltage limit (3.0
volts) with the same charge and discharge rates as described in
the beginning of this article. The result is displayed in figure
9 where the relative remaining capacity Q/Q0 is initially
0.93 instead of 1. As explained in section III-A, the actual
capacity of a new cell is usually lower than the name plate
capacity, while the latter was used as reference. As expected,
the initial capacity value of 0.93 for a cell corresponds with
the value where the line in figure 3 crosses the x-axis. It can
be concluded that all cells under the described test conditions
have an actual capacity that is 0.93 ± 0.01 times the name
plate capacity, which justifies the assumption made in section
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Fig. 9. Remaining capacity as function of the number of cycles

II-A; that all tested batteries can be considered equal. The
difference between name plate capacity and actual capacity
can be contributed to the test cycle that was used to measure
the capacity. The manufacturer has likely used a different, less-
aggressive test cycle.

Figure 9 is characterized by the sharp decrease of the
remaining capacity of the cell. It took less than 200 cycles
to reduce the capacity by 20%, and after about 1000 cycles,
less than 15% of the capacity still remained in the cell. With
such a high degradation, it is obvious that these cells are very
unsuitable for deep discharge cycling. Although the rate in
capacity reduction is high, it does not show significant changes
over time. Hence, it is questioned whether the definition of
battery failure used by manufacturers (≤ 80% remaining
capacity) is really justified. It might be something that can
only be applied on certain types of batteries. A more rigid
definition, as was proposed, is more suitable for real-life
applications of batteries, especially if the batteries are only
subject to partial cycles.

IV. DISCUSSION

From the presented results, it is clear that the cells have a
lower degredation rate if they are subject to partial discharge
cycles only. Although the flow of energy in each cycle is lower
with respect to full discharge cycles, the total energy flow
during the life time of the battery is higher. It is, therefore,
interesting to look at the different options for grid connected
storage from a financial point of view. A single battery that is
80% discharged in each cycle exhanges the same amount of
energy as two identical batteries that are only 40% discharged.
Thus the total cycle capacity of the storage system does not
change, but the battery degradation rate in the single-battery
storage system is higher for three reasons. First, because of
the larger DOD, the degradation rate is higher. Secondly, more
capacity can be lost before the battery can no longer fullfill its
requirements. Finally, with two batteries, the current needed
for the same application is only half of that of a single battery.
It is well known that lower currents reduce the degradation rate

of the battery. The result is a longer life time, which allows
for higher profits.

However, it should be considered that not all applications
can replace a single battery by two partial discharged batteries.
First, there is the investement costs. Although it is economical
more favorable to have two batteries, the intitial costs of
already highly priced lithium-ion batteries can be a barrier.
Secondly, other characteristics like weight or volume can play
their part. For a car, the weight is limited. With the current
lithium-ion technology, about 1 kg of batteries is needed for
every kilometer of range the car needs to have. For storage
in homes or (existing) substations, the volume can be a
bottleneck.

One of the things not studied was the effect at the charged
side of the battery. The degradation of battery that is com-
pletely emptied in every cycle is higher than for a battery
which is only partial emptied. This also holds for a battery
that is completely charged. A battery that is not completely
charged, but e.g. charge to a lower end of charge voltage
(EOCV) like 3.9 or 4.0 volts instead of 4.2 volts, experiences
less degradation [18]. Furthermore, the capacity fade of the
partial cycled batteries was not analyzed due to insufficient
data. It is recommended, for future work, that at regular cycle
intervals during testing the capacity is measured, although
the additional degradations following from this measurement
might disturb the results.

V. CONCLUSIONS AND FUTURE WORK

In this article, the importance of the role that batteries
will play in future smart grids has been discussed. However,
intelligent control of these batteries in e.g. ancillary services
for the grid, requires knowledge about the aging behavior of
the battery depending on its use. This way, the intelligent
algorithm can optimize the technical and financial benefits
of the battery. In this article, it was shown that a number
of points are vital for an aging prediction model for real-life
applications. The depth of discharge (DOD) has a significant
effect on the cycle life of a battery. The smaller the DOD,
the longer the cycle life and the more energy it can store
during its lifetime. For real applications, the DOD of discharge
varies with each cycle and the aging behavior of lithium-ion
cells at irregular discharge patterns will be studied in future
experiments.

The behavior of the equivalent series resistance (ESR) has
also been discussed. The closer the end of discharge voltage
approaches, the faster the ESR increases. Additionally, the
rate at which the ESR increases depends on the DOD. The
ESR increases faster when the cell makes deep discharge
cycles. Furthermore, the ESR and the energy efficiency may be
correlated. Based on these observations, it was concluded that
the ESR is the most suitable parameter that can be measured
within an operating storage system to predict the cycle life
of the battery, using its historic loads. Future experiments and
simulations have to show how the ESR can predict the cycle
life of a cell accurately, and if this relation also holds for other
manufacturers and types of lithium-ion batteries.
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