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Abstract

A network composed of actin filaments exhibits an increasing stiffness under mechanical loading.

This thesis expands the original 2D network model [9] to a fully periodic liquid cell network model

(RVE). The RVE model has the same network shear response as the initial 2D network model,

independent of the boundary prescription. However, the normal stress on the network does differ

when volume conservation is prescribed. Tensile and compression of the network cell is totally

dominated by the liquid cell, but the network does show stiffening behaviour. A compressive

pre-strain applied on a network before a shear strain is applied will therefore return a different

response than a network on which only a shear strain is applied. The origin is explained by

using the orientation distribution of the filaments and slack in the network.
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CHAPTER 1

Introduction

In cell mechanics, biological tissues show an intriguing active response to mechanical loading,

for which a great interest has been shown in the last decade. A quantitative understanding

of these complex mechanical responses, such as cell motility and mechanotransduction, is of

crucial importance for many biomedical applications. Tissues that have a network-like structure

respond to mechanical loading by exhibiting an increasing stiffness, i.e. the ratio between the

change of stress and change of strain increases [11]. This has for example been demonstrated

by microtwisting experiments on individual cells [13] and by rheological experiments on in-vitro

gels of cytoskeletal filaments like actin [3, 8]. These network-like tissues or biological gels are

classified as being semiflexible polymers and have also attracted theoretical studies [7], but these

mainly apply on the small strain regions. Besides experiments and theoretical studies, one other

method of understanding the behaviour of mechanical loaded networks is the use of numerical

calculations. A two-dimensional network model, which makes use of the finite element method,

has been developed by the micromechanics research group at the University of Groningen in

trying to understand network behaviour under mechanical loading [9]. In this master’s thesis,

the model is extended with new features, resulting in a more in-depth understanding of the

behaviour of filamenteous networks.

To give the reader an idea about the real life importance of these networks, a brief explanation

of the structure of the biological cell and in particular, the construction of the (actin) cytoskele-

ton, is given in chapter 2. Chapter 3 discusses the details about the original two-dimensional

network model [9] before any modifications were made on it. It describes the network generation

and explains how the network response is calculated. In chapter 4, the model is extended with
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the introduction of new degrees of freedom for the network, resulting in a fully periodic model

with no longer fixed box sizes. The unexpected problems that arise from these modifications

are solved in chapter 5, where a liquid cell is introduced into the model to account for volume

conservation. This chapter is not only considering the response for networks under an applied

shear strain, but also under pure compression and tension. Chapter 6 discusses what the effect

is on the network response of any pre-straining. This network behaviour is explained using the

orientation distribution function and slack orientation function quantities. Finally, chapter 7

gives a summary of the results, conclusions and recommendations for further research with the

two-dimensional network model. The appendix explains the most important changes applied

in the Fortran code, which were needed for the extension of the network model. These can

save the group a substantial amount of work in finding out how to apply these changes in their

three-dimensional network model, which is currently under development [4].

This master’s thesis could not have been written without the help of a few people. First of all,

I want to thank Erik van der Giessen for the opportunity given to graduate in his research group

and for his guidance, support and continueous encouragement during the graduation period.

Secondly, I want to thank Patrick Onck and Teun van Dillen for their co-operation in this

project, ideas and support. Patrick was a good help in writing new pieces of programming code

and I had a lot of interesting discussions with Teun.

Special thanks to Teun Koeman with whom, as a room mate and fellow-nerd, I had interesting

conversations about whatever nerds talk about. I learned a great deal from him.

Finally, warm thanks to the other (ex-)members of the µMeχ group with whom I had a

great and enjoyable time: Andreas, Angelo, Anja, Antonia, Ashok, Cihan, Florence, Kodanda,

Liesbeth, Maarten, Maneesh, Monica, Ranjeet, Ratna, Ria, Serge and Yaroslav.

Bart Roossien

January 2006
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CHAPTER 2

Biological overview of the cytoskeleton

There are a great many varieties of living systems on this planet, which have been brought

to existence by evolution over many millions of years. These living systems are all of a very

different kind and therefore, it is very hard to make generalisations in biology. However, in all

these varieties of living systems and functions, a few commonalities can be found. One of the

most interesting commonalities is the cellular construction. Every living system is composed out

of one or more biological cells. Each of these cells is a living system of its own, and as long as it

lives in favourable conditions (temperature, food), it can sustain itself. In multi-cell organisms

like humans, cells build up the organs, muscles and skin. The cells also take care of logistical

functions, like the transport of oxygen and carbon dioxide, and defend the multi-cell creatures

from badwilling bacteria and virusses. Because of this variety in functions, the biological cell is

therefore one of the most interesting and complex systems in biology to look at. This chapter

will give some background information on the cell, with special attention on the construction of

the cytoskeleton, which plays an important part during the mechanical loading of the cell.

2.1 The biological cell

The biological cell is a most intriguing and complex system. The basic components that can be

found in all cells are the plasma membrane and the cytoplasma. The membrane is the outer

‘skin’ of the cell and separates the cell interior from its environment, but allows certain types

of molecules to get through in order to supply the cell with fuel (oxygen, glucose, amino-acids)

and dispose its waste to the blood vessels. The membrane is impermeable for water itself and
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2.2 Cytoskeleton & cell motility

Figure 2.1: Schematic drawing of an eukaryotic cell with all its components.

prevents the cytoplasm from flowing into the environment, which results in the cell conserving

its volume. The cytoplasm is anything that can be found within the boundaries of the plasma

membrane, except for a possible nucleus. Simplistic cells or prokaryotic cells are commonly found

in the bacteria class and distinguish themselves from the more complex eukaryotic cells, which

can be found in plants, animals and also humans, by the lack of a membrane-bound nucleus.

The genetic material in eukaryotic cells is held inside the nucleus in the shape of chromosomal

DNA, but in prokaryotic cells, the genetic material is found in circular loops called plasmids,

which are floating in the cytoplasma.

Figure 2.1 is a schematic drawing of an eukaryotic cell from an animal, where a variety of

enclosed systems with their own membrane can be found. These systems, like the mitochondria,

the endoplasmic reticulum, the vacuole and the ribosomes, are called organelles. These organelles

perform basic but important functions in the cell, like the generation of ATP out of ADP (energy)

and the construction of necessary proteins [5]. The cytoplasm without these organelles is called

the cytosol and in this watery fluid, large arrays of fibrous proteins are contained, which are

collectively called the cytoskeleton. This cytoskeleton gives the cell its strength and rigidity,

and takes part in mechanotransduction, cell motility and cell division.

2.2 Cytoskeleton & cell motility

Although most biological cells in living systems are in stationary positions, some cells require

the ability to displace themselves or to make changes in their morphology. The mobility of

cells is called cell motility and can be seen for example in the contraction of the muscle cells,
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2.2 Cytoskeleton & cell motility

Figure 2.2: Schematic drawing of cell locomotion. (1) The leading edge lamellipodia are forwarded. (2)

Some of the forwarded lamellipodia adhere to the underlying substratum via focal adhesion. (3) The bulk

of the cytoplasm in the cell body flows forward. (4) Adhesion contacts at the trailing end of the cell are

detached and the tail retracts into the body cell. [5]

the elongation of nerve axons and the constriction of a dividing cell during mitosis. Even more

subtle are the movements inside the cell itself, like the seperation of chromosomes. The critical

element in these movements is the cytoskeleton. The cytoskeleton is a cytoplasmic system

of three different types of fibers: the microfilaments (∅ 7 − 9nm), the intermediate filaments

(∅ 10nm) and microtubules (∅ 24nm). These fibers are well ordered polymers build from small

protein subunits. The network-like structure of these fibers supports the cell membrane in order

to give the cell its shape. The fibers also form tracks in the cell itself, along which organelles

can move in the cytosol.

Cell motility takes place by the assembly and disassembly of microfilaments and microtubules

at the front and the rear end of the cell. Cell locomotion results from a coordination of motions

generated by different parts of the cell and starts with the forwarding of the lamellipodium, which

is a large broad membrane protrusion, as well as slender “fingers” of the membrane called the

filopodia. This is illustrated in figure 2.2. Although it is not clear what propels the membrane

to go forward, one hypothesis is that the membrane is pushed forward by the rapid assembling

microfilaments. After the forwarding of the cell membrane, pieces of the membrane will attach

itself firmly onto the substratum. This process involves focal adhesion points that anchor the

cell to the substratum, prevent the lamellipodia from retracting into the cell body. After the

forward attachments are made, the bulk contents with the cell body will move forward. As the

cell continues the travel, its tail is pulled forward by the contraction of the stress fibers in the

tail or by elastic tension, often leaving small parts of the cell behind which are stuck to the

substratum by the focal adhesion.
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2.3 Actin

Figure 2.3: Microfilaments in a chick heart fibroblast, labelled with rhodamine-conjugated phalloidin. [10]

2.3 Actin

The migration as well as the morphology of the cell is mainly enabled by the microfilament

cytoskeleton, which is build-up of actin subunits. This actin cytoskeleton is larger than any

organelle in the cell and because the actin cytoskeleton is so big, it can change the cell morphology

by just assembling or dissasembling itself. It can even make up to 5% of the cellular protein.

During cell motility, actin must assemble rapidly and does not always have the chance to form

ordered structures. It has a great variety of filament lengths, and the filaments are cross-linked

into bundles and networks. The ratio of cytoskeletal proteins is not rigidly maintained and from

all these properties, the cell can take its many shapes and vary them easily.

In figure 2.3 filament bundles of actin can be seen at the leading edge while axial bundles,

called stress fibers, are underlying the cell body. The cell body is filled with a network of

actin filaments, but the individual filaments of this network are difficult to resolve under the

microscope.

Both the bundles and networks of filaments in the actin cytoskeleton have functionally iden-

tical roles. They both provide a framework that supports the plasma membrane and therefore

determines the cell’s shape. Structurally, bundles and networks are not identical and differ in

organization of actin filaments. In bundles, actin filaments are closely packed in parallel arrays,

whereas in a network, the actin filaments are loosely packed and more or less randomly oriented

and placed. There are two types of actin networks. One is associated with the plasma membrane

and is planar, the other is present in the cell and is three-dimensional, giving the cytosol its

gel-like properties. In both the bundles and networks, the filaments are held together by actin

cross-linking proteins. Short cross-linking proteins hold the filaments close together, thereby

forming bundles of filaments. In contrast, long cross-linking proteins are able to adapt to any

arrangement of actin filaments and therefore act as glue on the intersection of two filaments.
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CHAPTER 3

The unit cell model

The two-dimensional network model considers a filamentous network contained in a cell

or box of a certain size. The cell represents a small element of the entire network that can

be found in the biological gel sample, but still has the same physical properties as the entire

sample. However, the cell does not have fully periodic boundaries and cannot be represented as

a representative volume element. Therefore, this model is referred to as a unit cell model. The

response of this cell under mechanical loading is computed by using a finite element analysis

on the filaments, which are considered to be Euler-Bernoulli beam elements. This chapter will

explain the network generation and how mechanical loading is applied in the model.

3.1 Network generation

The unit cell network model is based on a two-dimensional periodic unit cell of dimensions lx×ly

in which N filaments with length L are randomly placed with a random orientation. The proper

periodicity is taken into account, that is, if a filament crosses a boundary, it continues further

from the opposite boundary. The box size is chosen large enough that it does not affect the

results of the network deformation behaviour much, as determined by Xie [15]. The density of

the network is characterized by the line density ρ, which is defined as the total length of the

filaments in the unit cell, divided by the unit cell area, i.e.

ρ =
NL

lxly
(3.1)
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3.1 Network generation

-U12

lx

ly

-

6

e1

e2

Figure 3.1: Schematic drawing of displacements in a network unit cell under shear

The filaments are treated as elastic rods with stretching stiffness AE, which relates the axial

strain to the axial stress needed to induce that axial strain, and a bending stiffness EI, which

relates the radius of curvature to the bending moment needed to induce that radius. In an

isotropic elastic rod, the bending and stretching stiffness are related through their cross-sectional

geometry, but in this model they are taken to be independent. Points where filaments overlap

are considered to be crosslinked, in a similar fashion as done by Headet al. [2] and Wilhelms

and Frey [14]. The crosslinks are assumed to be stiff, i.e. both displacements and rotation of the

two filaments at the crosslink remain the same. The network generated this way is taken as the

initial stress-free configuration.

Figure 3.1 is a schematic of the unit cell under an applied shear strain, without the actual

filaments being shown. Both top and bottom boundaries of the unit cell remain flat. This is

in contrast to the left and right boundaries of the network, which are able to distort. Because

this kind of deformation is not allowed on the top and bottom boundaries, the unit cell is only

fully periodic in the e1 direction. Therefore it cannot represent a representative volume element,

which should have full periodicity in the e2 direction as well. The volume of the unit cell during

deformation remains constant, which means that the diagonal components of the strain tensor,

ε1 and ε2, are zero1. To maintain periodicity in the e1 direction, the left and right boundary

nodes are ‘tied’ together. Tying can be considered as a very stiff spring between the two opposite

boundary nodes. Note that due to periodicity, the nodes only differ by a distance lx in horizontal

direction and that their displacements are equal.

u(lx, y) = u(0, y) (3.2)

1 Actually, volume conservation means that the trace of the strain tensor ε equals zero. However, the top and

bottom boundary nodes are prescribed in such a way that ε2 equals zero anyway, which immediately implies that

ε1 equals zero as well.
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3.1 Network generation

Figure 3.2: The unit cell network model. Left the initial stress free network and right the network under

an applied shear strain Γ = 0.225.

Here u denotes the degree-of-freedom vector of a node, which is composed out of the displace-

ments in the e1 and e2 directions, and the rotation about the e3-axis (perpendicular to e1 and

e2) in this particular order:

u =
[
ux uy lφ

]T
(3.3)

where the rotation has been multiplied by the beam length l to give it the same dimensions

as the other displacements in the vector. The underlining of the quantity u means that it is

a generalised finite element quantity and not a real vector as opposed to u for example. In

this way, the corresponding nodes at x = 0 and x = lx are in fact one and the same node,

which results in the proper periodicity. Unless some degrees of freedom are eliminated, it is not

possible to add equation (3.2) directly into the system and therefore, the computer model uses

the imaginary spring to connect the two nodes. If the stiffness of the spring is going to infinity,

the two nodes will behave like one and the same node. For the computer program, it is sufficient

to assign a high value to the stiffness of the spring. To be on the safe side, a subroutine checks

if the stiffness is indeed chosen high enough to prevent the nodes drifting away from each other.

The maximum drift distance between the two nodes that has been allowed was l/103.

Mechanical loading in terms of an applied shear strain on the unit cell is simulated by

prescribing the displacements of the top and bottom boundary nodes. The bottom boundary

nodes are fixed in their initial positions, which means that they cannot displace in the e1 or e2

direction nor can they rotate, i.e.

u(x, 0) = 0 (3.4)

The top boundary nodes can only collectively move in the e1 direction by prescribing

u(x, ly) =
[
U12 0 0

]T
(3.5)

Figure 3.2 shows a network in its initial stress-free configuration (left) and the same network
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3.2 Euler-Bernoulli beam elements

Figure 3.3: Shear strained horizontally periodic actin network (From [4]).

when it is under an applied shear strain with the previously described method and boundary

conditions (right). It is clearly seen that the top and bottom boundaries remain flat, while

the left and right boundaries deform identically. The periodicity of the network in horizontal

direction can be seen clearly in figure 3.3, where the highlighted part is a single unit cell.

3.2 Euler-Bernoulli beam elements

Every filament in the network is discretized into 10 equal-sized Euler-Bernoulli beam elements,

each accounting for stretching and bending of the entire network. Convergence tests have shown

that this number is small enough in order not to influence the results [15]. The stiffness matrix

of each of these beam elements can be deduced from the well-known Euler-Bernoulli beam

theory [1, 6]. Figure 3.4 shows a beam element with the forces and moments that can act

upon it and the displacements and rotations that are a response to those forces and moments

respectively. To reach equilibrium, the following equations must be satisfied:

fx̂1 + fx̂2 = 0

fŷ1 + fŷ2 = 0

M̂1 + M̂2 + fŷ2l = 0

(3.6)

Here the hat denotes the use of a local coordinate system, i.e. the coordinate system of the beam

itself when it is placed in a horizontal position as shown in figure 3.4. Vectors and matrices that

are expressed in the global coordinate system are written without hat. The external virtual

work δwe is given by δwe = (δû)Tf̂ , with û and f̂ being the six point displacement and the six

point force respectively. By incorporating the equilibrium equations into the external virtual

work an expression for the internal virtual work δwi is found:

δwi = fx̂2 (δux̂2 − δux̂1) + fŷ1

(
δuŷ2 − δuŷ1 + lδφ̂1

)
+ M̂2

(
δφ̂2 − δφ̂1

)
(3.7)
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3.2 Euler-Bernoulli beam elements
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(a) Forces and moments
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(b) Displacements and rotations

Figure 3.4: Forces and moments with their corresponding displacements and rotations for a single Euler-

Bernouilli beam element.

Because the internal virtual work is also equal to δwi = (δε)Tσ, the general stresses are chosen

to be2

σ =


σ1

σ2

σ3

 =


fx̂2

fŷ1

M̂2/l

 (3.8)

making the conjugate internal strains to be

ε =


ε1

ε2

ε3

 =


ux̂2 − ux̂1

uŷ1 − uŷ2 + lφẑ1

(φẑ2 − φẑ1) l

 (3.9)

The constitutive behaviour of the beam can be found by starting with the well known

governing equations for a beam in equilibrium, which follow from the Euler-Bernouilli beam

theory [6]:
dû2

x

dx̂2
(x) = 0 EI

d2ûy

dx̂2
(x) = M(x̂)

dû4
y

dx̂4
(x) = 0 (3.10)

The quantities E and I denote the Young’s modulus and the moment of inertia of the cross

section, I =
∫
A x2

2dx2dx3, of the beam, respectively. By solving these differential equations with

the proper boundary conditions, the stiffness matrix Ŝ and stress-strain relations are obtained:

σ =


σ1

σ2

σ3

 =
E

l3


Al2 0 0

0 12I 6I

0 6I 4I




ε1

ε2

ε3

 ≡ Ŝ ε (3.11)

where A is the area of a cross-section of the beam. To transform the stiffness matrix of a beam

element from the local coordinate system to the global coordinate system, a rotation matrix is

2Other choices are possible, but the same results will be obtained.
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3.2 Euler-Bernoulli beam elements

required: 
uxi

uyi

lφzi

 =


cos β − sinβ 0

sinβ cos β 0

0 0 1




ux̂i

uŷi

lφẑi

 i = 1, 2 (3.12)

with i = 1, 2 the two nodes that correspond to the beam element and β the angle between the

beam element and the horizontal axis in the global coordinate system, i.e.

sin β = (y2 − y1) /l , cos β = (x2 − x1) /l (3.13)

where (xi, yi) are the node coordinates in the unit cell and l is the node to node length,

l =
√

(y2 − y1)
2 + (x2 − x1)

2 (3.14)

which should not be confused with the initial length l0 of the beam. Designating this transfor-

mation matrix as T , the stiffness matrix S for a beam element in the global coordinate system

can be calculated as

S = TT Ŝ T (3.15)

The stiffness matrices of all beams are combined in one big stiffness matrix A, corresponding

together with a displacement vector U and a force vector F , which contains the displacement

respectively force vectors of all nodes:

AU = F (3.16)

Additionally, the tying equations and boundary conditions are added to this equation. In every

timestep, this procedure is repeated. Using Gaussian elimination to solve this equation, the

change in displacements in the time-step can be found. Updating all parameters like energies,

forces and geometry of the network results in the simulation of a deforming network.
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CHAPTER 4

The representative volume element model

To account for full periodicity of the network, the unit cell is reconstructed into a repre-

sentative volume element (RVE). An RVE is a small element from a macroscopic body with

fully periodic boundaries in all translational directions, but with the same physical properties

and responses as that macroscopic body. Therefore it can represent the macrosocopic body,

while significantly reducing the time needed for stress-strain calculations. Except for the fully

periodic boundaries, it is closely related to the unit cell. However, it allows the implementation

of stretching and compression of the network, meaning that the dimensions of the box lx and ly

are not constant under network deformation. This was not possible with the unit cell model.

4.1 RVE implementation

To construct a fully periodic cell, the top and bottom boundary nodes need to be tied together

in a same way that already has been done with the left and right boundary nodes. However, this

implies that mechanical loading is not possible anymore by prescribing the boundary nodes, as

it would restrict the displacements of those nodes and therefore, contradict with the condition

of full periodicity. This problem is solved by introducing three new degrees of freedom in the

network model, which will represent the macroscopic normal displacements (U1 and U2) and

the shear displacement (U12) of the entire network as drawn in figure 4.1. These new variables

can be inserted into the network model by rewriting the boundary conditions. Nodes that

are on the left and right boundaries were having equal displacement vectors in the unit cell

model (equation 3.2). This is extended by allowing the right-hand boundary nodes to have an
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4.1 RVE implementation
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Figure 4.1: Schematic drawing of a deformed representative volume element with its new degrees of

freedom.

additional displacement U1 in the e1 direction with respect to the left boundary nodes:

u(lx, y) = u(0, y) + U1e1 (4.1)

Nodes that are on the top and bottom boundaries were not tied together at all in the unit cell

model, but in this model they are. Similar to the left and right boundary nodes, these top

boundary nodes have the same displacement vector as the bottom boundary nodes, plus an

additional displacement U2 in the e2 direction. However, in this case the top boundary nodes

can also have a displacement in the e1 direction with respect tot the bottom boundary nodes in

the shape of a shear displacement U12:

u(x, ly) = u(x, 0) + U12e1 + U2e2 (4.2)

Because the network is now able to stretch or compress, the dimensions of the cell are subject

to change according to

lx = l(0)
x + U1 ly = l(0)

y + U2 (4.3)

where l
(0)
x and l

(0)
y are the initial box size dimensions.

Since new degrees of freedom have been introduced, the network stiffness matrix has changed

both in size and content and therefore needs to be recalculated. This new stiffness matrix can be

deduced from the concept of virtual work. For a virtual displacement vector δu, which contains

the virtual displacements of all nodes in the network, the internal virtual work δw needed for

these displacements is

δwi = σTδε (4.4)
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4.1 RVE implementation

where δε and σ denote the virtual strain and stress related to these displacements, which are

defined as in equation (3.9) and (3.8) respectively. The principle of virtual work states that the

internal work is equal to the external work of the network, the latter being given by

δwe = fTδu (4.5)

The new degrees of freedom are introduced in a vector Q and are related to the displacements

u of the nodes according to:

e = Du− PQ = 0 (4.6)

where both P and D are coupling tensors. The condition (4.6) comes from the nodes being tied

stiffly together, because due to periodicity the two nodes are in fact one and the same node.

The virtual work component resulting from the strain e can be incorporated by introducing a

corresponding multiplier λ. Furthermore, the network strain can be written in terms of the

displacement vector by a (differential) matrix B as ε = Bu. The combination of equations (4.4),

(4.5) and (4.6) results into

δw = FTδQ + fTδu = σTδε + λTδe

= σTBδu + λTDδu− λTPδQ
(4.7)

Since the network only deforms elastically, the multipliers can be written in terms of a stiffness

constant times the related strain. By introducing σ = Sε and λ = ke, equation (4.7) then

becomes

FTδQ + fTδu = uT
[
BTSB + DTkD

]
δu

− PTQTkDδu− uTDTkPδQ + PTQTkPδQ
(4.8)

As k is kind of a stiffness constant of a spring between two nodes that are tied together, the

condition e → 0 can be accomplished by choosing k →∞. In the computer model, the value of

k is therefore chosen to be very large in order to avoid drifting of nodes which are tied together.

Finally, equation (4.8) can be written in a simplified matrix notation:BTSB + DTkD −DTkP

−PkD PTkP

u

Q

 =

f

F

 (4.9)

where Q and F are composed of

Q =
[
U1 U2 U12

]T
=
[
lxε1 lyε2 lyΓ

]T
(4.10a)

F =
[
F1 F2 F12

]T
=
[
lyσ1 lxσ2 lxτ

]T
(4.10b)

The submatrix BTSB is the previous stiffness matrix A of all the Euler-Bernoulli beam elements,

as derived in section 3.2.

17



4.2 Unit cell response versus RVE response
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Figure 4.2: Average shear stress response of networks with density ρ̄ = 13 (left) and ρ̄ = 38 (right) for

both the RVE and unit cell model. Ten different random realizations were used.

4.2 Unit cell response versus RVE response

It is of significant importance to check on differences between the unit cell model and the RVE

model. They are best compared with each other when the models have similar properties. The

unit cell model has fixed box size dimensions and so, the RVE model should have those as well.

This is of course easily achieved by prescribing

U1 = U2 = 0 and U12 = lyΓ. (4.11)

The network response for both the RVE and unit cell model is plotted in figure 4.2. For simplicity,

the results are expressed in the following dimensionless parameters:

σ̄ =

σ̄1 τ̄

τ̄ σ̄2

 =
L

EA
σ ρ̄ = ρL (4.12)

In the RVE model, the values for σ2 and τ follow directly from the model, as these values are

coupled to the new stretching parameters of the network. However, this is not the case with the

unit cell model. In that model, the stresses are found from the sum of the corresponding forces

on the top boundary nodes, i.e.

τ =
1
lx

∑
i∈Ntop

F
(i)
1 σ2 =

1
lx

∑
i∈Ntop

F
(i)
2 (4.13)
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4.2 Unit cell response versus RVE response

Figure 4.3: Snapshot of the geometry of deformed networks with left, the RVE model and right, the unit

cell model. The networks are under an applied shear strain Γ = 0.5 and have density ρ̄ = 13.

The responses as plotted in figure 4.2 are averages of 10 different random realizations. The stress-

strain curves of the two networks differ from each other, because stiffening in the RVE model

occurs later than in the unit cell model. However, the difference is only marginally small and in

the long run, both networks end up having the same shear stiffness. Stiffening of the networks

occurs due to the reorientation of some of the filaments. Because of these orientations, those

beams are now axially loaded and, compared to the bending stiffness, the stretching stiffness of

a filament is much higher, resulting in a higher overall stiffness. The delayed stiffening in the

RVE model is likely to be caused by the model having more freedom at the boundaries. The

top and bottom boundaries in the unit cell model are prescribed, but in the RVE model these

boundaries can deform and therefore partially adept to forces that act upon it. However, these

boundaries play only a minor part in the entire network response, resulting in the difference

between the two network responses being small. The relative large error bars indicate that there

is a lot of spread among the different network responses. Therefore, any small difference between

the two models can be neglected.

Figure 4.3 shows a snapshot of the network geometry for each model with the networks being

under an applied shear strain Γ = 0.5. Before mechanical loading, the network geometries were

identical with a line density of ρ̄ = 13. It is easy to see that the RVE model has a network

geometry where the top and bottom boundaries are deformed (left image), while the unit cell

model has straight top and bottom boundaries (right image). From the bottom-left to the top-

right of the cell, a bundle of filaments under an angle of approximately 45◦ can be seen in both

snapshots. These type of bundels comprise reoriented filaments, which are axial loaded and

therefore are the cause for stiffening of these networks. Furthermore, a lot of initially straight
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4.3 RVE response under unconstrained shear
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Figure 4.4: Response of networks with density ρ̄ = 13 and different boundary conditions with left the

shear stress and right the normal strains.

filaments have deformed by bending, which corresponds to the low stiffness of the network at

small strain levels at these low densities. But at high densities (ρ̄ = 38), the network stiffens

immediately in the small strain region. Because of the higher crosslink density in these high

density networks, percolations have already been formed in the initial stress free network. When

the network is mechanical loaded, these percolations are immediately axial loaded. All in all, it

can be concluded that there are no differences in network response between the unit cell model

and the RVE model.

4.3 RVE response under unconstrained shear

In the previous section, the RVE was prescribed with the top and right boundaries fixed relatively

to the bottom and left boundaries respectively. This means that the strains are prescribed to

be zero as done in equation (4.11). Another kind of boundary condition is to leave the cell free

to distort and specify Fi to be zero. By not fixing the boundaries, the network is physically free

and can accomodate itself under mechanical loading by either streching or compression. Figure

4.4 shows the network responses under an applied shear strain for four networks with different

boundary conditions. The fixed boundaries response (red curves), which equals the unit cell

response, serves as a reference for the other networks. The left and right image show the shear

stress and the normal strains ε1 and ε2 of the networks respectively.
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4.3 RVE response under unconstrained shear
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Figure 4.5: Normal stresses response of networks with density ρ̄ = 13 and different boundary conditions.

For both networks with the top and bottom boundaries free, i.e. F2 = 0, the shear stress

is almost zero. This is no surprise as the normal stress σ2 is closely related to the shear stress

of the network. As said previously, the filaments that account for stiffening of the network are

under an angle of approximately 45◦. The axial force on these filaments can be decomposed into

components parallel to and perpendicular on the top and bottom surface, with the components

being of approximately the same size. Because the network is prescribed in such a way that

F2 (and of course also σ2) must equal zero, the network will accomodate itself for any positive

normal stress σ2 (figure 4.5) that acts on the network by compressing itself. As a result, the

shear stress is close to zero as well. The network accomodations can be observed in the right

image of figure 4.4, where the networks compress between 30% and 50% of their initial box size.

Note that due to this compression, the volume of the box reduces and therefore, the line density

is actually increasing under mechanical loading.

The network with the left and right boundaries free, but with its top and bottom boundaries

fixed, i.e. F1 = 0 and U2 = 0, shows a remarkeble response under the applied shear strain. In

the region where the applied shear strain is less than 50%, the shear stress is approximately zero

and with that, the stiffness is also very low. In the second region with strains larger than 50%,

the network stiffens fast. This results in a high shear stress, even higher than the shear stress

of the reference network. The first region of this response can be explained with the amount of

freedom the network initially has. So again, the network accomodates itself under an applied

shear strain, resulting in the network shear stress almost being zero. The second region can be

understood by looking at the network geometries, which are shown in figure 4.6. This figure
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4.3 RVE response under unconstrained shear

Figure 4.6: Left: U1 = U2 = 0, middle: F1 = F2 = 0, right: F1 = 0 U2 = 0. The snapshots are properly

scaled and taken under an applied shear strain Γ = 0.8. The left network has dimensions 40× 40µm.

shows three initially identical networks of density ρ̄ = 13, which were under an applied shear

strain Γ = 0.8 when the snapshots were taken. The left network is the reference network where

the boundaries are completely fixed. The center network has none of its boundaries fixed and

compresses in both e1 and e2 direction. The right network is the network with the remarkeble

response. The latter network compresses with about 90% of its initial length as can also be seen

in the right image of figure 4.4. The filaments of the network reorient in such a way, that they

form one large bundle of filaments that is now axially loaded. This gives rise to a very large

stiffeness.

With higher density networks, the same response has been observed for all four boundary

conditions, although stiffening occurs earlier. Concluding this chapter, the stretching of networks

in the RVE model seems to be working, but in all cases, the reduction in network volume is

far from being realistic and is likely the cause of the ridiculous stress-strain responses of the

networks. However, the space between the filaments is empty, which could be the cause for

these effects. The next chapter will continue on this.
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CHAPTER 5

The RVE network in a liquid cell

The previous chapter showed that the RVE model did work, but that the results were far

from being satisfactory. The networks compressed a great amount under mechanical loading,

resulting in a much higher or lower stiffness than the reference network. But in the network

geometry itself, between the filaments, only empty space can be found. There is no constraint

in the model that accounts for volume conservation. However, in in vitro experiments, the

network is immersed in a liquid. Because a liquid is almost incompressible, it implies volume

conservation of the network as a whole. This chapter will continue on the extension of the

filamenteous network model, by introducing a liquid cell in the model.

5.1 Implementation of a liquid cell

Initially, the model contained a filamenteous network, which was placed into an empty box with

the proper periodicity. Instead of taking an empty box, the model can now be seen as a liquid

cell containing the filamenteous network. Any drag forces the liquid acts upon the filaments are

neglected as well as the shear stiffness of the liquid, but not the bulk modulus. Therefore, the

filaments are not affected by the viscosity of the liquid, so that the liquid and the filamentous

network in the cell can be considered as being non-interacting constituents. In a periodic cell,

there is no room the liquid can go, so it should accomodate for what the network wants to do.

Moreover, the liquid is essentially in rest and therefore it can only have a uniform hydrostatic

pressure everywhere, which is determined by the overall volume change εv:

σm = 1
2(σ1 + σ2) = kεv = k(ε1 + ε2) (5.1)
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5.2 Network response with a liquid cell under simple shear

with σm the hydrostatic or mean stress of the cell. The internal virtual work in equation (4.4)

increases due to the uniform hydrostatic pressure. The additional virtual work δwliq
int is

δwliq
int = lxlyσmδεv = lxly(1− f)k(ε1 + ε2)(δε1 + δε2) (5.2)

where f is the network volume fraction, defined as the fraction of cell area that is covered by

filaments i.e.

f =
NLD

lxly
(5.3)

with D the diameter of the filaments. Substituting the definitions for ε1 and ε2 in terms of the

displacements U1 and U2 and rewriting the equation in a matrix notation results into

δwliq
int = (1− f)k

[
δU1 δU2

]
ly
lx

1

1
lx
ly


U1

U2

 (5.4)

This is simply added to the total internal virtual work on the right-hand side of equation (4.7),

and thus leads to the stiffness matrix

(1− f)k


ly
lx

1

1
lx
ly


U1

U2

 (5.5)

being added to that of the network.

5.2 Network response with a liquid cell under simple shear

The same situation as in section 4.3 is analyzed, but this time with the liquid cell implemented in

the model. Again, the average responses for networks with four different boundary conditions are

calculated, each consisting out of ten different random realizations. These responses are plotted

in figure 5.1. The left image of figure 5.1 shows the shear stress responses. It is fairly obvious

that the shear stresses are identical for all four different boundary conditions and therefore, the

shear stress response is independant of how the network boundaries are prescribed. The right-

hand image of figure 5.1 shows the normal strains of the networks, which are on average zero

(note the large error bars), and it is immediately clear that these are totally different compared

to that without liquid. It is also interesting to see that ε2 ≈ −ε1, indicating that the liquid is

doing its task properly. Because there is no net stretch or compression, the volume of the cell is

conserved and with that, the problem of high amounts of network compression as described in

the previous chapter is solved, as well the pathological stiffening behaviour of the networks.

Figure 4.5 showed that the normal stress σ2 of a network with prescribed boundaries is

positive and that the axial stiffness dσ2/dΓ increases with the applied shear strain. However, a
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5.2 Network response with a liquid cell under simple shear
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Figure 5.1: Average shear stress (left) and normal strains (right) versus the applied shear strain on

networks immersed in a liquid with line density ρ̄ = 13.

network in a liquid cell with only the top and bottom boundary constrained (F1 = 0 and U2 = 0)

has a normal stress which is zero during the whole process of shearing. This response has been

plotted together with the response of the reference network (U1 = U2 = 0) in figure 5.2. But

why is this normal stress zero in contrast to the positive stress the reference network has? To

satisfy the boundary condition F1 = 0, the network wants to contract in the e1 direction. The

liquid in the cell cannot be compressed and wants to stretch the network in the e2 direction

in order to conserve its volume. However, the prescription U2 = 0 prohibits the stretching of

the cell in the e2 direction and as a result, an external compressive stress σ1 on the top and

bottom boundaries is needed to satisfy this boundary condition. The network itself wants to

shrink under simple shear and therefore tension is necessary to keep the boundaries at their

place. This is equal to the σ2 response of the reference network, where the liquid does not play

a role. The compressive and tensile stress are approximately of equal magnitude, since σ2 ≈ σ1

for the network, resulting in a zero net stress on the top and bottom boundaries.

Figure 5.2 also shows the normal stress response for affine behaviour. This behaviour is not

calculated with the network model, but from the analytical expression for σ2 from [12]:

σ̄2(Γ) =
ρ̄

EA

∫ Φ

0
λ(φ,Γ)fc(φ,Γ)C(φ,Γ){sin2 φ− cos2 φ}dφ (5.6)

with the boundary condition that σ1 = 0 and where σ̄2 and ρ̄ are the same dimensionless

paramaters as in equation (4.12). The integration range 0 ≤ Φ ≤ arctan(2/Γ) is the range
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5.2 Network response with a liquid cell under simple shear
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Figure 5.2: A tensile force is found in the simultations if the boundaries are fixed by prescription, but

when the liquid must take care of volume conservation, the normal stress is zero. Affine calculations

return a compressive stress for which no explanation has been found.

where the filaments are stretched in the affine model. Undulated filaments have almost no

contribution and are therefore not taken into account. The function fc(φ,Γ) is the amount of

applied force on a filament oriented under an angle φ when the network is under an applied shear

strain Γ. This applied force gives rise to a stretch λ(φ,Γ) of the filament. The chain orientation

distribution function or codf is given by the function C(φ,Γ) and is the distribution of how the

filaments are oriented in the network, normalized by the total number of filaments. As can be

seen in figure 5.4, the affine calculation for the normal stress is negative, i.e. a compressive force

is acting on the top and bottom boundaries. And although it does show stiffening, it behaves

physically completely different from the simulations. In the affine model, the network wants to

stretch in the e2 direction, because a compressive force is needed to counter that, but in the

discrete network simulations, the network wants to do the opposite.

So, although the shear stresses for networks with different boundary conditions are identical,

the normal stresses are not. This is because of the liquid being incompressible and therefore

countering the network wanting to compress, resulting in a net normal stress of zero. Networks

with their boundaries prescribed have nothing to do with the liquid, because volume conservation

is maintained by the boundary conditions itself and the liquid cannot affect the network directly.

Analytic calculations on the affine model returns a compressive stress on the network, but no

explanation has been found yet for why this is the case.
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5.3 Tension and compression

ε2

σ 2

-0.25 0 0.25
-0.2

0

0.2

0.4

ε2

ε 1
-0.25 0 0.25

-0.2

0

0.2 ε2=-ε1
liq + nw
liq

Figure 5.3: Response of a liquid cell with and without filamenteous network under compression and

tension. Left: normal stress response. Right: normal strain.

5.3 Tension and compression

Tension and compression simulations are performed by increasing U2 in time at a constant rate,

with U12 = 0. To allow the network to conserve its volume, the left and right-hand boundaries

are kept free, i.e. F1 = 0. The results of these simulations can be found in figure 5.3. The left

image shows the normal stress σ2 which, just as under simple shear, exhibits stiffening. The

right image shows the relation between the strains ε1 and ε2 for a liquid cell with and without

a network. There is no difference between these two, indicating that the liquid cell dominates

the network behaviour. But as can be seen in figure 5.4, the network filaments both buckle

and reorient. The left snapshot in this figure is the network geometry when the network is

in its initially stress free configuration. When a small strain is applied, the filaments buckle,

characterizing the low stiffness of the network. When the applied strain is higher, filaments

start reorientating in either the e2 direction when under tension or the e1 direction when under

compression. These filaments are axially loaded and are the reason of the σ2 behaviour. Note

that the liquid cell itself does not contribute to the normal stress, because the cell only changes

shape and does not contain any elastic energy. As the affine model would predict, no shear

stress has been observed with both compression and tension simulations.

The straight thin solid line in 5.3, indicates ε2 = −ε1 or in other words where the overall

Poisson ratio ν = −1. The cell response deviates from this line, with sometimes even an absolute
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5.3 Tension and compression

Figure 5.4: Geometries of a network under tension. Left: the initial network geometry. Middle: the

network geometry under an applied tensile strain of ε2 = 0.11. Right: the network in its final state with

ε2 = 0.25.

Poisson ratio |ν| that is larger than one. Therefore, it looks like if the cell is not conserving its

volume, but this is not true. It has specifically been checked that the volume of the cell is really

conserved in the simulations. The non-linear relation between ε1 and ε2 can be entirely related

to how these strains are defined. For each timestep the strains dε1 and dε2 are calculated:

dε1 =
dU1

lx
and dε2 =

dU2

ly
(5.7)

where dU1 and dU2 are the changes in the values of U1 and U2 in a single timestep. To find

the accumulated strains ε1 and ε2 of the network, these relations are integrated, while using the

definition for the box size dimensions as in equation (4.3). The result is

ε1 = ln

(
U1

l
(0)
x

+ 1

)
and ε2 = ln

(
U2

l
(0)
y

+ 1

)
(5.8)

which is a logarithmic defined strain.

Ending this chapter, the most important thing in these tension and compression simulations

is that the shape of the box is determined by the liquid cell. Therefore, the network does deform

and forms bundles of filaments which stiffens the network. This will have an effect when a

pre-strain has been applied on a network that is being deformed under simple shear. The next

chapter will look into that.
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CHAPTER 6

The effect of pre-strain on the network shear response

With the liquid cell implemented, the RVE model is now working properly. Tension,

compression and simple shear simulations have been performed with this model and satisfying

results have been found. This chapter will look into a more complex type of mechanical loading.

In experiments, the gel is sometimes put under compression before simple shear is applied. To

understand what the effect of such a pre-strain is on the network response under simple shear

and to explain why this is, some new network quantities are introduced first.

6.1 New network quantities

6.1.1 Discrete orientation distribution function

In equation (5.6), the chain orientation distribution function C(φ,Γ) or codf was used in the

analytic calculations of the network stress in the affine model. To characterize the filament

orientation distribution in the simultations, a discrete orientation distribution function D(φ,Γ)

or dodf is computed. This is a discrete distribution of the filament orientation in the network

geometry, i.e. the number of elements in the network that have an orientation between φ and

φ + ∆φ at a certain value of Γ:

D(φ,Γ) =
1

2πA

∑
α

nα(Γ) {nα ∈ A : φ ≤ α < φ + ∆φ} (6.1)

with A the set of A network elements and 0 ≤ φ < π, since the dodf is a π-periodic function,

D(φ + π,Γ) = D(φ,Γ) (6.2)
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6.1 New network quantities

The dodf is a distribution, i.e. a normalized function, meaning that the total area under the

distribution function for the discrete intervals sums up to 1

2π∑
φ=0

D(φ,Γ)∆φ = 1 (6.3)

6.1.2 Slack orientation function

Slack is a quantity that represents the amount of undulations in a network. Here it has been

decided to look at the slack in filament sections between two crosslinks instead of the slack in

whole filaments. The amount of slack in a filament section between two crosslinks is defined as

sα =
lc − r

lc
(6.4)

where lc is the contour length of the filament section and r the end-to-end distance between

the two crosslinks. The total amount of slack is found to increase when the network is being

deformed. At first sight, this is counter-intuitive since the network stiffens at the same time,

but only a few filaments take part in stiffening by being axially loaded. The filaments that are

not axially loaded easily buckle, so that the amount of slack in a filament section depends on

its orientation. To avoid such confusion, the amount of slack is discretized over a number of

angle intervals. Not only is the amount of slack visible this way, but also under which angle this

amount of slack occurs. The numerical function that calculates this quantity is called the slack

orientation function S(φ,Γ) or sof. The function is of course not normalized as that would mean

that information about the total amount of slack in a network is lost. The sof is somewhat

similar to the dodf and can be defined as

S(φ,Γ) =
∑

sα(Γ)
{

sα ∈ Ã : φ ≤ α < φ + ∆φ
}

(6.5)

where Ã is the set of filament sections in the entire network and sα is the amount of slack in

a single filament section as defined in equation (6.4). Just as the dodf, the slack orientation

function is a π-periodic function. The total amount of slack in the network, S̄, is the area under

the slack orientation function between 0 and π

S̄(Γ) =
π∑

φ=0

S(φ,Γ)∆φ (6.6)

6.1.3 Principal directions

To see in which direction the filaments are maximally stretched, the principal directions are

calculated for affine behaviour and then compared with the simulations. In a coordinate sytem

with the principal directions as base vectors, the shear strain vanishes by definition. To find the
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6.2 Pre-strain results

principal directions,we start from the components of the deformation gradient tensor F for a

continuum under simple shear:

Fij =

1 Γ

0 1

 (6.7)

Since the det(F ) > 0 on physical grounds, the polar decomposition theorem says that F can be

uniquely decomposed into

F = R ·U = V ·R (6.8)

where U and V are the right and left stretch tensor respectively and R is a proper orthogonal

rotation matrix. Both stretch tensors have the same principal values λi, but the corresponding

principal directions ui and vi differ by a rotation

vi = R · ui (6.9)

Using the Cauchy-Green tensor U2 = F T · F , the principal values can be found by finding the

eigenvalues of U2, which are equal to λ2
i . Taking the square root, we obtain

λ1 =
Γ
2

+

√(
Γ
2

)2

+ 1 ∧ λ2 = −Γ
2

+

√(
Γ
2

)2

+ 1 (6.10)

with the corresponding eigenvectors

u1 =
(
1 + λ2

1

)− 1
2

 1

λ1

 ∧ u2 =
(
1 + λ2

1

)− 1
2

−λ1

1

 (6.11)

which are the principal stretch directions in the undeformed configuration. The principal di-

rections vi in the deformed configuration are computed from (6.9). The rotation tensor can be

calculated by using a similarity transformation for U in terms of its eigenvectors and eigenvalues,

leading to

R = F ·U−1 = F ·
(
Q ·D ·Q−1

)−1 = F ·Q ·D−1 ·QT (6.12)

where

D =

λ1 0

0 λ2

 and Q =
[
u1 u2

]
(6.13)

Applying this rotation on the principal directions in equation (6.11) and calculating the new

directions for an applied shear strain Γ = 0.3 results in

v1 =

0.758

0.653

 v2 =

−0.653

0.758

 (6.14)
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Figure 6.1: Shear response for liquid and non-liquid cell networks, both having been pre-strained in com-

pression to ε2 = −0.1 and a reference network, which has been sheared only. The left and right image

shows the response for low (ρ̄ = 13) and high (ρ̄ = 38) density networks, respectively.

6.2 Pre-strain results

To understand the effect of a pre-strain on a network, three types of simulations are performed.

Two networks, one with and one without a liquid cell, are pre-strained with a compressive

strain of 10% in exactly the same way as done in section 5.3, followed by shearing. In the

process of shearing, the network boundaries are fixed, otherwise the network will accomodate

for the applied pre-strain by deforming to its original square shape. A third network is sheared

without any pre-strain applied on it, and serves as a reference network for the two pre-strained

networks. Results are shown in figure 6.1, where the left and right image show the shear stress

response for low density (ρ̄ = 13) and high density (ρ̄ = 38) networks respectively. To make

sure that the dodf and sof will have a statistical meaning, the average of at least 40 different

random realizations is taken. Note that under pre-strain, the liquid cell network will stretch in

the e1 direction to conserve the cell volume, while the non-liquid cell network does not stretch.

For both densities, the non-liquid cell network has a slower stiffening response than the reference

network. The liquid cell network however does stiffen earlier than the reference network for a

low density, but this is not the case for high density networks. In the end, the prestrained

liquid cell network has a lower shear stiffness than the reference network for both densities. To

understand why these differences in network behaviour occurs, the quantities sof and dodf and

the network geometries are being studied.
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6.2 Pre-strain results

Liquid Shear onlyNo Liquid
ρ=38

ρ=13
Γ=0.3Γ=0, ε2=0 Γ=0, ε2=-0.1

Figure 6.2: The discrete orientation distribution function of all three networks for both low and high

densities.

The discrete orientation distribution functions for both low and high densities are plotted

in figure 6.2. The initial filament orientation is rather randomly distributed, as seen from the

circular shape of the distribution function. This means that there are approximately an equal

number of filaments in all orientation intervals. During shearing, filaments rotate towards the

shear direction resulting in more filaments becoming axially loaded, thus giving the network its

increased stiffness. The main difference between the two pre-strained networks can be found

just after the pre-strain has been applied. Filaments in the liquid cell network orient themselves

in the e1 direction, because the network stretches in that direction to conserve its volume.

These filaments form bundles as well, which gives the network a higher stiffness than it initially

had. For low densities, this explains the initial higher shear stiffness of the liquid cell network

compared to the reference network seen in Fig. 6.1, but it does not explain the response for

high densities. Moreover, the liquid cell initially may have a higher shear stiffness than the

reference network, it does not stay this way. Since the filaments have already formed bundles

under network pre-strain, the liquid cell network has less freedom than the reference network
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6.2 Pre-strain results

CODF
DODF
vi

Γ=0.3

Γ=0

Figure 6.3: The codf compared with the dodf for both Γ = 0 (dotted) and Γ = 0.3 (solid) for a network

with density ρ̄ = 38 under simple shear.

to reorient filaments in the shear direction when a shear strain is applied. This finally results

in the liquid cell having a lower stiffness than the reference network without prestrain. For

low densities, this can be seen by the crossing of the stress–strain curves in figure 6.1. At high

densities, the reference network stiffens immediately due to the many crosslinks in the network.

But now, the liquid cell has a lower stiffness, because the filaments have become horizontally

oriented, and not in the shear direction. Figure 6.2 also shows that the non-liquid cell does not

have any significant re-orientations during pre-straining. Because no reorientations takes place

it will have the same stiffness as the reference network in the end. However, the slower response

cannot be explained by the dodf.

Figure 6.3 shows both the chain orientation distribution function for the affine model as

well as the discrete orientation distribution function calculated in the simulation. The dotted

lines show the inital distribution, while the solid lines are the orientation distributions when

the network is under an applied shear strain of Γ = 0.3. No pre-strain has been applied and

the networks have density ρ̄ = 38. It is quite clear that the dodf is quite similar to the codf.

Although there are some small differences between the two, the statistical spread in the dodf

makes it unclear if there really is a difference between the two distributions or that it is only

related to the statistics of the dodf. The conclusion that can be drawn is that the filament

orientation in the simulations show a similar distribution as the affine model for this shear strain

and network density. However, it might be possible that the orientation distribution function
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Shear OnlyLiquid No Liquid

ρ=13

ρ=38

Γ=0, ε2=-0.1 Γ=0.3 vi

Figure 6.4: The slack orientation function of all three networks for both low and high densities. The plots

are scaled properly, meaning that the area of the propellor-shaped curve is the total amount of slack in

the network.

differs significant in low density networks for (very) small shear strains, but this has not been

investigated yet.

The slack orientation function is plotted in figure 6.4, again for both densities. Initially, there

is no slack, because the network is generated with straight filaments only. Under pre-strain, slack

is generated in both the liquid and non-liquid cell networks. Most slack is generated in the e2

direction, which is the direction of the compression. Because stiffening occurs in the liquid cell

network, but not in the non-liquid cell network, one might have expected that the amount of

slack in the non-liquid cell network is greater than in the liquid cell network, but the opposite

is true. Figure 6.5 shows the network geometries after pre-strain, but before the shear strain is

applied. The boxes are a magnification of a small area of network, where an undulated filament

(approximately at an angle of 45◦) can be seen. In the non-liquid cell network this filament has

a slack of about 10%, which is the same amount of compressive strain applied. In the liquid cell

network the filament is much more undulated, because due to orientations, bundles of filaments
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6.2 Pre-strain results

Figure 6.5: Geometries of the two pre-strained networks with low density just before a shear strain is

applied. The liquid cell network and non-liquid cell network is plotted left and right respectively. The

boxes are magnifications of undulated filaments in the networks.

are formed with highly undulated filaments in between. Because no reorientations occurs in the

non-liquid cell network, the network deformes uniformly (affine), resulting in the compressive

strain transfered directly into the filaments. The slack in the liquid-cell network therefore is

much larger.

For low density networks, there is a significant amount of slack in the direction where fila-

ments are axially loaded. However, the network is still in the bending–tension transition phase;

hence not all of the slack in that direction has been pulled out yet, but this will happen eventu-

ally when the applied shear strain is increased further. High density networks do not have any

slack in this direction, because the network is already past the transition region for Γ = 0.3.

Stiffening in high density networks occurs earlier and therefore, the transition region can be

found for lower strains.

In contrast to the reference network which starts with straight filaments, the non-liquid cell

network under pre-strain does have slack. When a shear strain is applied, this slack needs to

be pulled out of the network first, before it can stiffen. Because the orientation distributions of

the filaments are equal for both networks, the slower stiffening response of the non-liquid cell

network can be entirely attributed to the slack, for both high and low densities.

In figures 6.3 and 6.4, two dash-dotted lines have been drawn with index vi. These are the

principal directions as calculated in equation (6.14) for Γ = 0.3, which make an angle with the

horizontal axis of 41◦ and −49◦ and intersect each other perpendicular. The dodf has the most

and least filaments oriented in the same direction as the 41◦ respectively −49◦ principal axis,

which was to be expected as it already has been shown that the dodf shows affine behaviour.

For the sof, similar conclusions can be drawn. As can be seen in figure 6.4 (especially for high

densities), the least and most slack lie in the same direction as the two principal axis.

36



6.2 Pre-strain results

Concluding this chapter, a compressive pre-strain followed by a shear strain will give a

different response compared to a network which is sheared only. It has been shown that in

a liquid cell network reorientations already take place in the pre-strain phase, resulting in an

initial higher stiffness for low density networks, but evolving towards a lower network stiffness

than a network that is not pre-compressed. No re-orienations take place in a non-liquid cell

network, making the slack in the network responsible for the slower stiffening response. It has

also been shown that the orientation distribution in the simulations of higher density networks

is similar to that in the affine model.
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CHAPTER 7

Conclusions and recommendations

This chapter will give a summary of the conclusions that have been drawn in this thesis.

Furthermore, a few recommendations are made on what kind of future research could be done

with the two-dimensional network model.

7.1 Conclusions

• No significant difference has been found in the network response under simple shear be-

tween the unit cell model used in [9] and the RVE model.

• After the introduction of a liquid cell in the network model, the shear stress response

is independent of how the boundaries are prescribed. However, this is not true for the

normal stresses. When the boundaries are fixed, an external tensile force is needed to

keep thse boundaries at their place, because the network wants to compress. But when

the boundaries are not fixed, the liquid cell prevents the network from compressing and

no external force is needed.

• For compression and tension simulations, the shape of the cell is determined by the liquid

only. The network itself, however, does show the formation of filament bundles, resulting

in stiffening of the network.

• A pre-strained non-liquid cell network exhibits slower stiffening than a network that has

been sheared only, since slack is generated in the network during pre-straining and this
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7.2 Recommendations

has to be pulled out under shear before stiffening can take place. A pre-strained liquid

cell network has a final shear stiffness that is lower than that of a network that has only

been sheared. However, for low density networks, reorientations of filaments occur under

pre-strain, resulting in an initially higher stiffness than the networks without pre-strain.

• It has been shown that the filament orientation in a network under simple shear is dis-

tributed similar to that in the affine model. Although it has not directly been shown that

the same holds for the slack orientation, the principal directions as well as the integration

boundaries indicate that the slack orientation function shows affine behaviour.

7.2 Recommendations

• The normal stress induced by shear according to the affine model is compressive, while

the simulations give a tensile stress. Why does this opposite behaviour occur? Is it the

non-affinity of the network, or are there assumption in the affine model that do not work

out correctly?

• Only the influence of a compressive pre-strain has been investigated, but what will be the

influence of a tensile pre-strain?

• All the simulations in this thesis have been performed with initially straight filaments only,

i.e. a persistance length of lp →∞. It has been shown that for simple shear that undulated

filaments (lp = 1) only delay the stiffening of the network [9], but does the same hold for

compression, tension or pre-strain simulations as done in this thesis?

• It has been shown that for high filament densities or relatively high shear strains, the

orientation distribution function is near affine behaviour, but this might not be the case

in low density networks for small strains. It is worth investigating this further in view of

claims made in [2].

• Another quantity that can be used to characterize a network is the amount of filaments

that are being stretched. This was done by using the definition for the sof in equation

(6.5), but by redefining equation (6.4) to

sα =
(

r

lc

)n

(7.1)

where n is a large number. Due to the lack of time, no satisfactory results have been found

yet.
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APPENDIX A

Fortran code changes

This appendix will give a short overview of the major changes that have been applied to

the Fortran code of cytoskeleton2D. This may be useful for the group members that want to

continue on this subject or it might be used in the three dimensional network model [4].

actinfilament.f : The double array icontie is generated in this file. This is one of the most

important changes in the program. The initial variable had only two columns, but it is expanded

to three columns, with the third used for coupling with the new network stretching parameters.

It is also important to realize which node is placed in which column. Previously this was not

taken into account, because the degrees of freedom were the same (eq (3.2)), but now it is

important that the left and bottom boundary nodes are placed in the first column and the

corresponding right and bottom boundary nodes in the second. The network variables U1, U2

and U12 are placed at the end of the displacement vector at locations neqs-2, neqs-1 and neqs

respectively, where ‘neqs’ is the number of equations. Because the number of equations are not

yet known, dummy variables are used to indicate coupling with the boundary nodes.

! l e f t ( 4 ) boundary
i c o n t i e ( 1 , n t i e + 1) = ndof ∗ ( nnod + 1 − 1) + 1
i c o n t i e ( 2 , n t i e + 1) = ndof ∗ ( nnod + 2 − 1) + 1
i c o n t i e ( 3 , n t i e + 1) = −1
i c o n t i e ( 1 , n t i e + 2) = ndof ∗ ( nnod + 1 − 1) + 2
i c o n t i e ( 2 , n t i e + 2) = ndof ∗ ( nnod + 2 − 1) + 2
i c o n t i e ( 3 , n t i e + 2) = 0
i c o n t i e ( 1 , n t i e + 3) = ndof ∗ ( nnod + 1 − 1) + 3
i c o n t i e ( 2 , n t i e + 3) = ndof ∗ ( nnod + 2 − 1) + 3
i c o n t i e ( 3 , n t i e + 3) = 0
! r i g h t ( 2 ) boundary
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i c o n t i e ( 1 , n t i e + 1) = ndof ∗ ( nnod + 2 − 1) + 1
i c o n t i e ( 2 , n t i e + 1) = ndof ∗ ( nnod + 1 − 1) + 1
i c o n t i e ( 3 , n t i e + 1) = −1
i c o n t i e ( 1 , n t i e + 2) = ndof ∗ ( nnod + 2 − 1) + 2
i c o n t i e ( 2 , n t i e + 2) = ndof ∗ ( nnod + 1 − 1) + 2
i c o n t i e ( 3 , n t i e + 2) = 0
i c o n t i e ( 1 , n t i e + 3) = ndof ∗ ( nnod + 2 − 1) + 3
i c o n t i e ( 2 , n t i e + 3) = ndof ∗ ( nnod + 1 − 1) + 3
i c o n t i e ( 3 , n t i e + 3) = 0
! bottom ( 1 ) boundary
i c o n t i e ( 1 , n t i e + 1) = ndof ∗ ( nnod + 1 − 1) + 1
i c o n t i e ( 2 , n t i e + 1) = ndof ∗ ( nnod + 2 − 1) + 1
i c o n t i e ( 3 , n t i e + 1) = −3
i c o n t i e ( 1 , n t i e + 2) = ndof ∗ ( nnod + 1 − 1) + 2
i c o n t i e ( 2 , n t i e + 2) = ndof ∗ ( nnod + 2 − 1) + 2
i c o n t i e ( 3 , n t i e + 2) = −2
i c o n t i e ( 1 , n t i e + 3) = ndof ∗ ( nnod + 1 − 1) + 3
i c o n t i e ( 2 , n t i e + 3) = ndof ∗ ( nnod + 2 − 1) + 3
i c o n t i e ( 3 , n t i e + 3) = 0
! top ( 3 ) boundary
i c o n t i e ( 1 , n t i e + 1) = ndof ∗ ( nnod + 2 − 1) + 1
i c o n t i e ( 2 , n t i e + 1) = ndof ∗ ( nnod + 1 − 1) + 1
i c o n t i e ( 3 , n t i e + 1) = −3
i c o n t i e ( 1 , n t i e + 2) = ndof ∗ ( nnod + 2 − 1) + 2
i c o n t i e ( 2 , n t i e + 2) = ndof ∗ ( nnod + 1 − 1) + 2
i c o n t i e ( 3 , n t i e + 2) = −2
i c o n t i e ( 1 , n t i e + 3) = ndof ∗ ( nnod + 2 − 1) + 3
i c o n t i e ( 2 , n t i e + 3) = ndof ∗ ( nnod + 1 − 1) + 3
i c o n t i e ( 3 , n t i e + 3) = 0

bansol2.f : In the unit cell model, dummy records were made in the variable icon out of icontie

and then used in the subroutine skyprp. However, the variable icontie has changed in dimensions

and this trick does not work anymore. Therefore a few lines of code are added to this subroutine.

This requires the line “nelm = ncelm” in iemx.f to be placed before the call to skyprp instead

of after.

do n = 1 , n t i e
dof1 = i c o n t i e ( 1 , n )
dof2 = i c o n t i e ( 2 , n )
dof3 = i c o n t i e ( 3 , n )

ca l l s e t j d i a g ( jd iag , dof1 , dof2 )
i f ( dof3 . gt . 0 ) then

ca l l s e t j d i a g ( jd iag , dof1 , dof3 )
ca l l s e t j d i a g ( jd iag , dof2 , dof3 )

endif
enddo

initbc.f : Remove this subroutine as boundary node displacements are not prescribed anymore.

input.f : After all filaments are placed, the number of equations can be calculated. The new

number of equations are the number of nodes times the degrees of freedom of a single node (3)

and adding up 3 more, which are accounting for the new degrees of freedom of the network.

After the number of equations is established, the dummy values in the icontie variable can be
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re-adjusted into the real values.

neqs = ndof ∗ nnod + 3

do i = 1 , n t i e
i f ( i c o n t i e ( 3 , i ) . eq . −1) i c o n t i e ( 3 , i ) = neqs − 2
i f ( i c o n t i e ( 3 , i ) . eq . −2) i c o n t i e ( 3 , i ) = neqs − 1
i f ( i c o n t i e ( 3 , i ) . eq . −3) i c o n t i e ( 3 , i ) = neqs

enddo

liquid.f : This is a complete new subroutine, which is called from iemx.f after tying has been

performed. Alternatively, k (the bulk modulus of the liquid) can be placed in the input file as

well.

subroutine l i q u i d

include ‘common. f ’
real ∗8 RR(6 , 6 ) , F( 6 ) , eq ( 6 ) , f rac , k
integer i v (6 )

ca l l pzero (RR, 3 6 )
ca l l pzero (F , 6 )
ca l l pzero ( eq , 6 )

k = 2.15D9
f r a c = 2 ∗ n f i l ∗ l ength ∗ rad iu s / ( l x cu r ∗ l y cu r )

RR(1 ,1) = (1 − f r a c ) ∗ k ∗ l y cu r / lxcu r
RR(2 ,2) = (1 − f r a c ) ∗ k ∗ l x cu r / lycu r
RR(1 ,2) = (1 − f r a c ) ∗ k
RR(2 ,1) = (1 − f r a c ) ∗ k

iv (1) = neqs − 2
iv (2) = neqs − 1

ca l l skyasm (RR, F , eq , iv , 2 )

return
end

setbc.f : One randomly chosen node in the network is fixed, otherwise the network has full

translational freedom, which resultsin the equations not being solvable. Furthermore, a way to

prescribe shear and tensile needs to be implemented.

! f i x one node
inod = 25
ibc ( ndof ∗ ( inod − 1) + 1) = 1
ibc ( ndof ∗ ( inod − 1) + 2) = 1
bc ( ndof ∗ ( inod − 1) + 1) = 0.0D0
bc ( ndof ∗ ( inod − 1) + 2) = 0.0D0

tie.f : The call to tie equation has changed a bit. Q is not zero anymore as used to be.

Q = C( i c o n t i e ( 3 , i ) )
ca l l t i e e qu a t i o n ( do f j , do f i , i c o n t i e ( 3 , i ) , Q, kt i e , aorc )
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tie equation.f : This is the routine where the tying matrix is generated. The old matrix is

completely removed and replaced by the one derived in section 4.1.

i f ( dofq . gt . 0 ) then
RR(1 , 3) = − k t i e
RR(2 , 3 ) = k t i e
RR(3 , 1 ) = RR(1 , 3 )
RR(3 , 2 ) = RR(2 , 3 )
RR(3 , 3 ) = k t i e

endif

! f i l l i v
i v (1) = do f j
i v (2) = do f i
i v (3) = dofq

! Assemble f o r c e
F(1) = 0
F(2) = 0
F(3) = 0

! Assemble S t i f f n e s s matrix
i f ( i v ( 3 ) . gt . 0 ) then

ca l l skyasm (RR, F , EQCOR, iv , 3 )
else

ca l l skyasm (RR, F , EQCOR, iv , 2 )
endif
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